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ABSTRACT

Although Gaussian probability densities are extremely useful in
engineering analyses, they ar'e frequently misinterpreted in this context.

This report In specifically designed to clarify this situation. While the

material presented may be well known among statisticians, tho engineering

community appears to require such exposition.

The report begins by developing, from first principles, the contours
of constant probability associated with n-dimensional normal density

* !functions. Analytic expressions are then derived for the probability that

the random variables under study will be contained within these contours.

The results obtained are fully discussed from an engineering viewpoint.
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Although error analyses constitute one of the more frequently

encountered types of engineering problems, the topic is fraught with fallacies,

misconceptions, and distortions. One basic difficulty occurs in attempting to

interpret covariance matrices. While the usual assumption of Gaussianness is

reasonable, there is widespread tendency to assign erroneous probability con-

fidence levels to the associated error ellipsoids. For example, it is not well-

known in the engineering community that a Z-sigma ellipsoid carries a different

probability confidence level than a 2-sigma ellipse or, for that matter, than a
2-sigma line segment.

In this report, an attempt will be made to clarify this situation,
Although the material to be presented is supposedly "well-known" among a

miniscule clique of theorists, it is often the subject of much debate and the
cause of considerable confusion among engineers. For this reason, the

development will begin with a tutorial review of n-dimensional Gaussian prob-
ability densities and their associated contours of constant probability in var-
ious coordinate systems. The results obtained will then be used to develop

expressions for the probability associated with error contours in arbitrary
dimensional spaces. The practical engineering aspects of the theory with

an example will be considered in the final section.

NOTATIONAL CONVENTIONS

I The symbols A, C, T, A, 1Z I and represent matrices.

2. The unsubscripted symbols x, y, z are column vectors.

3. The asterisk ( *) is used to indicate matrix transposition.

4. The symbol 6denotes statistical expectation.
5. All other symbols represent scalar quantities.
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GAUSSIAN DENSITY FUNCTIONS AND PROBABILITY CONTOURS

Let x be an n-dimensional Gaussian random vector with mean x and

covariance matrix C given by

x de(x)
-*(1 )

C (x - Z)(x -=)*

In general, C is positive semidefinite. However, since the case of singular

C is of no practical interest, it will be assumed that C is strictly positive

definite.

The probability density function for x is

(())n/Z(Det C) 1 1/ exp [-i(x- )*C-l (x -x (2)

It follows from the above that contours of constant probability density are

defined by

(x -') *C (x -1 ) = k (3)

for arbitrary constant k. Geometrically, Equation (3) describes hyperellip-

soids in n-space.

Now, it is desirable to define a space in which the coordinate axes are

coincident with the princip-l axes of Equation (3). Toward this end, define

a new n-dimensional zero mean random vector y by

y = A(x- )

Since C is symmetric, A can be chosen so that

A* = A '

Det A 1 (5)

e(yy*) A A ACA*



with

a 2
"1 0

a2
a2

A = (6)

0 a 2

n

The elements of A are, of course, the eigenvalues of C, and the columns of A
are the eigenvectors of C. Thus A is an orthogonal matrix which trans -

forms the covariance C into a covariance A associated with the principal axes

of the hyperellipsoid given by Equation (3).

In general, if random vectors x and y are related by a one-to-one

(nonsingular) mapping, the associated density functions are related by(Ref. 1)

Py (y) Px(x)Det[L#] (7)

where

1x 1 'x 1

ax2  ax2  
ax2

-T-J IV (y1 Z'n (8)

ax C)x axn n .. n
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For the case at hand, the mapping in question is defined by Equation (4), so

that application of Equations (Z) and (5) to Equation (7) yields

P (y) = Det A- 1  1"

_ 12 exp (-~- I y)((ZnT) n2(Det C) lZY

(2Tr)n/Z(Det A)/ 2 exp y A- Iy)

where the last result follows from Equations (5). Finally, from

Equation (6)

I 1(a 1 Y2 Yn
P (y) = (Zn)nI•alZ'' n exp +[a(4 -4 ... + 2n (10)

It follows from Equation (10) that contours of constant probability density

in y-space are the hyperellipsoids given by

2 Z 2

+ +Y+ = k
a 1  n

These contours are identical to those defined by Equation (3). However,

the principal axes are now coincident with the y-coordinate axes as desired,

ie Y ' Yz . ' Yn are independently distributed.

For ease of manipulation, it is convenient to further transform the y

variables to a space in which the constant probability contours are hyperspheres.

In line with this goal, define the new random vector z by

z Ty (12)

where
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1/00

T A C1/ 2 = Ia2 (13)

0
1/lan

From a relationship analogous to Equation (7)

Syi

OZ) =- De exp [ z*TIA-IT"1 (14)

(2,,n)/ a 0 - n

which reduces to

pz(Z) ._ I exp [ z + z + + z (15)
(2T,)n/ I 1 2 n

upon application of Equations (12) and (13). Thus, as desired, the contours

of constant probability density defined by Equation (15)

2 2+ Z k2 (16)zI + z + ... + z n -

are hyperspheres of radius k. Comparison of Equation (15) with the general

Gaussian density function, Equation (2), shows that , P, .12 . ., z are

independent Gaussian random variables with zero mcaji :,r..d unit variances.

From the basic concept of density functions, the pr - ihiWi th,,t

ZIP z 2 . n lies within the hypersphere of radius k ib Lj U>

Pn (k) =. dz I d cz2 f1dz n exp 1/ 2 z + + +

I -k '1 •I Z I "'2 " n-I

5(F,



From the precdinlg analys i, it ti cluar tl at l•(k) ti also the

probability that x lies within the hyperellipsoid of Mquation (4). Trhu, the

basi, problem of finding p n(k), tho probability conftdotice level of the "k-

sigma" hyperellipsoid in u-space, reduces to -ovaluation of &quaticni (17).

It may appear that the most direct approinch to obtain the desired prob-

abilities is by integration of (17) uping n-dimenslonal polar coordinates,

While this technique readily yields the dusired results for n - 1|4, and

3, the integrals become extremely unwieldy for higher dimensions, This

difficulty can be overcome by recasting Equation (15) In terms of the

chi-square distribution and effectively collapsing n dimensions into one

dimension. Direct integration is then a simple task, yielding a recursion

formula for pn(k) valid for all n and k.

DLTERMINATION OF PROBABILITIES CORRESPONDINU TO "k-SIGMA"

CONTOURS.

Define the random vari-blbe u by the relation

u =z2 + z+ ... + aI z
It can be shown [Ref 3] that the probability density function for u, pu(u). is

chi-square; that is

P I un)/exp(-ul2) for u>0 19
u(u) (1n)

ou(u) = 0 for uT0

where F( ) denotes the G.imina function.

In view of Equations (16) and (18) the interior of the k-sigma hyperellipsoid in

x-space corresponds to the line segment

0 < u k (20)
in u-space. Thus,
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a

Pn (k) - " (1.0 *u('l/ep (-u/1) du .l
in P(nm I

Speviallaing Equation (I1) tor n i I a.d revallunM owt ri m a(1"0 yields

+.I k all"M

"aPForrn.no the subuit trton iw i that+ Equatton (•A) bmniomds

p (k) .7 1 /p(- 4df ti IrfUl ; 'k 1 (iA)
0

F~or n a , not that Pl(I) + 1+ so that £~quattuti (e1) tmmUewdtly, yiuldv

p.} /•J -/ du I - ("~l 4)

A general recursion formula for all n can bc ,.gtibliihuad by

expressing Equation (i1) as

pn+ P (k) -•l•I~n•:~ u1/ 2 U|oxpki-l/) du 1•

n PI4+1r((n/4 4 1) uxtu/ u(S

Then, from the properties of the Gamma function,

2(n/n+l) n2nl"(n 1

j -~7 .



anti, (tir votiatatit m and a,

l i ,'x.p(av)dv a l (av)- mfvm1exp(av)dv M)

Thtus, N~quation ca•)vn We rowritten

Pn k n / (n.a)/Z exp(-u/Z)du (28)

k expt-ka/2)

Now, tl first term on the right side of Equation (28) in precisely pn(k) as

d'linatl by E(•tintion (41). Thus, Equation (Z8)can be expressed as the

rocurs|i-n formula

n(k)apW)-xpl-k /2)(29)pn+2ll pnl- na n-)/ rw 1

Application of Iquations (23) and (24) to Equation (29) yields, after some

manipulation,

p W - erf(k/\Z) - /\(T xp(-k 2 /Z) k + ( + + k (30)
nI T I* G 130 5.' (n

for odd n

Pn(k) - I - expl-k l/2) 1 + k2 + k4 + ... + l(n-2 ) (31)
n for even n T rI e4*e(nZ

These results were obtained by L. Schwartz[ Ref. 51 by an indirect method.
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A graph of p n() vs k for solected values of n, as computed from
Equations (30) and (31), is presented in Figure 1. These same results are
listed in tabular form in Tables 1 through 8; Tables I through 4 displaying
values of k corresponding to selected pn(k) and n, and Tables 5 through 8
displaying values of pn(k) corresponding to selhcted k and n.

ENGINEERING INTERPRETATIONS

One of the conventional by-products of an error analysis is an
n-dimensional covariance matrix. However, this array, though frequently
encountered, is often misinterpreted. It should be clear from the preceding
discussion that this matrix is related to the one-sigma hyperellipsoid in
n-apace. Indeed, the probability that the random n-vector lies within its
boundaries is Pn(l) as given by Equation (30) or (31), not p,(l) (68%) as is
often incorrectly assumed. Specifically, pl(l) is the probability that any
one element of the random vector lies between the intercepts of the hyper-
ellipsoid with the corresponding coordinate axis without regard to where the
remaining elements lie. In short, for n > 1, Pn(l) assumes simultaneity,
while pl(l) does not! Indeed, pn(1) is always smaller than pl(l) (See
Figure 1).

Another common misconception is that the square roots of the
diagonal elements of the covariance matrix represent the lengths of the
semi-axes of the one-sigma error hyperellipsoid. Actually, they bear
no direct relationship to this contour. Note that the intercepts of the
one-sigma hyperellipsoid with the coordinate axes are given by the
reciprocal square roots of the diagonal elements of the inverse of the
covariance matrix as can be shown by examination of Equation (3).
These quantities, however, only provide the coordinate intercepts
of the one-sigma hyperellipsoid and do not, in general, define the
semi-axes of the hyperellipsoid. The distinction between these
disappears only when the coordinate axes and principal axes coincide.
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Since the probability level corresponding to a one-sigma hyper-

ellipsoid in n-space varies with n and is small for large n, it is generally

more desirable to consider hyperellipsoids related to a specific probability

confidence level (such as 50%). The analog of the covariance matrix for such

a region can be found by multipliIng the covariance matrix by the k2 t cor-

responding to any given pn(k). The resulting matrix can be convenientlyn
named the "k-variance matrix" and the associated error contour called the

"k-sigma hyperellipsoid. " As with the covariance matrix, the square roots

of the reciprocals of the diagonal elements of the inverse of the k-variance

matrix represent the intercepts of this hyperellipsoid with the coordinate

axes.

It is evident in many cases that the diagonal elements of the inverse

of the covariance (or k-variance) matrix will not adequately describe the prob-

ability distribution of a given random vector. Now, in general, a hyper-

ellipsoid in n-space is not very useful since it cannot be readily visualized. In

addition, the enclosed region is meaningless if the various components of the

random vector do not represent the same physical quantities (i. e., if they

are not measured in commensurate units).

This is algebraically equivalent to diagonalizing the covariance matrix,
2multiplying the resultant by k , and rotating back to the initial coordinates.

-10 -



In such situations, insight can be gleaned by projection into lower

dimensional subspaces, usually 2-or 3-space, in which each of the components

can be expressed in the same units. Two possibilities are available: (1) 2-

or 3-dimensional projections of a general n-dimensional hyperellipsoid which

constrains all random variables can be considered; (2) k-sigma ellipses

or ellipsoids can be found for compatible 2 or 3 element sets of the random

vector without regard to the behavior of the remaining elements. In the

former case, the desired contour is established by extracting the proper parti-

tion of the inverse of the k-variance matrix. In the latter case the desired

ellipse or ellipsoid can be obtained by partitioning the covariance matrix

first, multiplying the result by the appropriate k 2 for p,(k) or p 3 (k) and

then performing a matrix inverse. In either case, the magnitudes and direc -

tions of the principal axes of the final contours can be found by solving the

related eigenvalue-eigenvector problem.

Instead of considering the geometrical problems of displaying hyper-

ellipsoid error regions, a possible alternative is to present results in terms of

hyperspheres with the same probability level. Although this approach may

seem appealing at first, it has accompanying disadvantages. Unless the

principal axes of the given hyperellipsoid are nearly equal, use of the corre-

sponding hypersphere can lead to serious errors in engineering judgement

because all information regarding preferred directions will be lost. Further-
more, even when the use of hyperspheres is justifiable, the desired radius is
not easily determined. For n=2 and nz.3 special algorithms exist for this com-
putation [References 2, 4]. In these cases, when pn (k) .50, the results are

the well-known Circular Error Probability (CEP) and Spherical Error Probability
(SEP), respectively.

- 11 -



In order to illustrate the above concepts, consider the various

50% probability contours in the xI - x2 plane associated with a zero

mean Gaussian random vector x = (x,, x 2 , x 3 ) whose covariance

matrix is

1 0. 95 0. 90]
= 0 0.95 1 0.95 (32)

0. 90 0. 95 1

First establish the xI - x2 projection of the 3-dimensional

ellipsoid which encloses 50% of the values of xI. As indicated above,

the appropriate partition of the inverse of the k-variance matrix must

be found. For the case at hand, n = 3, P 3 (k) = 0. 50, so that Table 1

yields k = 1.5382. Thus

4338 -4.226 .112f

(k2P) -4 226 8.453 -4.226 33)

( P 1122 -4.226 4.338 (

and the desired contour is given by the equation

x x] 4.338 -42261 [x] 3
[4.226 8.453] Lx2

Equation (34) implicitly carries a constraint on x 3 . A 50%

contour in the xI - x2 plane which ignores the value of x 3 can also be

established. To accomplish this, first partition the P-matrix, then

multiply by the k2 satisfying P 2 (k) - 0. 50 (where from Table 1,

k - 1. 1774) and finally invert the result

-12 -



[I X21 2 1 0.95-I

L. 177 4 )Z 0 (35)

-0 95 1 x 2

or

-7. 029 7. 399 x

Observe that the reciprocal square roots of the diagonal

elements of the matrices in (34) and (36) give the coordinate axes inter-

cepts of the respective ellipses, while the solutions to the corresponding

eigenvalue-eigenvector problem yields the principal axes and orientation

angles. Note also that the square roots of the diagonal elements of the

P-matrix are the standard deviations of the individual elements x 1 , x 2 ,

and x 3 . Multiplying each by k = 0. 67449 (obtained from Table 1 for

pl(k) = 0.50) gives the 5016 boundaries on each element of x without regard

to the behavior of the remaining two elements.

The various contours and boundaries disci: ;,.d above are

illustrated in Figure 2. For completeness the CEP ,- l rrol.ction

of the SEP are also shown on the diagram. The exampo -Vi, t li

considerable variation possible for different contours ;i . , .% Ii,

the same covariance masrix. 1he analyst, therefore, mti.u. careuflly

consider the alternatives and their interpretations ic',r - 4 J I

choice. Whilv in general, there is no "best" geoum-trit :t rpreltititI

of a Gaiiisian probability distribution,error ellips.s iid vllipstids .are

usually preferabie since they contain more ln toi;tat ii tihan thehe ttlr fpormins.
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2.0 PROJECTION OF SEP

500/ ELLIPSE COMPUTED
BY IGNORING X3 [Eq(36)]

PROJECTION OF 50% ELLIPSOID

.2.0 -1.6 .1.2 -0.8 -0.4 00. 12 16 20

-2.0

Fig. 2. Probability Contours for Exainiple
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